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Motivation

▶ Bridge the gap between high-level quantum algorithms and
implementation on physically realizable quantum hardware
platforms

▶ Sparse Hamiltonian simulation: Perform e−iAt for sparse A.
▶ Can we develop a systematic framework allowing for

hardware-efficient implementations of quantum algorithms
on near-term devices?
▶ Make the best use of native device operations
▶ Commercially available platforms: D-Wave, QuEra, IonQ, etc.



Motivation

▶ Bridge the gap between high-level quantum algorithms and
implementation on physically realizable quantum hardware
platforms

▶ Sparse Hamiltonian simulation: Perform e−iAt for sparse A.

▶ Can we develop a systematic framework allowing for
hardware-efficient implementations of quantum algorithms
on near-term devices?
▶ Make the best use of native device operations
▶ Commercially available platforms: D-Wave, QuEra, IonQ, etc.



Motivation

▶ Bridge the gap between high-level quantum algorithms and
implementation on physically realizable quantum hardware
platforms

▶ Sparse Hamiltonian simulation: Perform e−iAt for sparse A.
▶ Can we develop a systematic framework allowing for

hardware-efficient implementations of quantum algorithms
on near-term devices?
▶ Make the best use of native device operations
▶ Commercially available platforms: D-Wave, QuEra, IonQ, etc.



Input models for Hamiltonian simulation

Sparse-matrix oracle access
Construct oracles to query entries of A:

Or : |i⟩ |k⟩ → |i⟩ |rik⟩ , Oc : |ℓ⟩ j → |cℓj ⟩ |j⟩ ,
OA : |i⟩ |j⟩ |0⟩⊗b → |i⟩ |j⟩ |aij ⟩.

Block-encoding
Encode A as a block in unitary

UA =

(
A ∗
∗ ∗

)

▶ Advantages: Enables design and analysis of highly efficient algorithms
(Childs and Kothari 2011; Low and Chuang 2017; Gilyén et al. 2019, etc.)

▶ Limitations: Very high overheads! Block-encoding an 8× 8 banded
circulant matrix: 171 one-qubit gates and 114 two-qubit gates for a
single oracle call (Camps et al. 2022)



Input models for Hamiltonian simulation

Pauli access model (standard binary)
Decompose A as a sum of Pauli operators:

A =
∑
j

ajPj .

▶ Advantages: Easy for simulation on real devices if matching
hardware native operations
▶ Analog quantum computers (D-Wave, QuEra) with Ising-like

machine Hamiltonian
▶ Digital quantum computers (IonQ, IBM, etc.) capable of 1-

and 2-qubit operations

▶ Limitations: Can require exponential number of terms even
for structured matrices, typically involving more than 2-body
interactions



A Unifying Framework for Embedding Hamiltonians

Hamiltonian embedding: Embed the dynamics of the target
Hamiltonian A into a larger Hamiltonian H restricted to a
subspace S which we call the embedding subspace.

H =

(
A 0
0 ∗

)
=⇒ e−iHt =

(
e−iAt 0
0 ∗

)

Generalize to “approximately”
block-diagonal Hamiltonians:

Error depends on off-diagonal blocks R = PS†HPS :

▶ If R = 0, no error

▶ If R ̸= 0, introduce a sufficiently large penalty Hamiltonian



A Unifying Framework for Embedding Hamiltonians

Embedding scheme Sparsity structure Max Pauli weight

Unary Band max(b, 2)
Antiferromagnetic Band max(b, 2)
Circulant unary Banded circulant max(b, 2)

Circulant antiferromagnetic Banded circulant max(b, 2)
One-hot (w/ penalty) Arbitrary sparse 2
Penalty-free one-hot Arbitrary sparse 2

b is the bandwidth of a
banded matrix:

Some embeddings studied before in different contexts (Chancellor 2019;
Hadfield et al. 2019; Sawaya et al. 2020)



Example: Embedding a Tridiagonal Matrix

Consider an 5× 5 tridiagonal matrix:

A =


0 1
1 0 1

1 0 1
1 0 1

1 0


Our framework provides flexibility to choose from a collection of
different embeddings:

Embedding scheme Embedding Hamiltonian H

Unary
∑4

j=1 Xj + g
(
Z1 − Z4 −

∑3
j=1 ZjZj+1

)
Antiferromagnetic

∑4
j=1 Xj + g

(
Z1 + Z4 +

∑3
j=1 ZjZj+1

)
One-hot (w/ penalty)

∑4
j=1 XjXj+1 + g

(∑
j

I−Zj

2 − 1
)2

Penalty-free one-hot 1
2

∑4
j=1 XjXj+1 + YjYj+1

g > 0 is the penalty coefficient for embeddings with a penalty



Hamiltonian Embedding: A New Input Model
▶ Advantages: Embedding certain sparse matrices requires 2-body

Hamiltonians =⇒ enables analog implementations, significantly
reduced gate counts for digital implementation

▶ Limitations: Uses O(n) qubits to embed an n× n matrix (standard
binary requires O(log n) qubits)

Two embedding Hamiltonians H1 and H2 can be composed in different
ways:

The dimension of the embedding subspace increases multiplicatively.

By composing many such Hamiltonian embeddings, we are able to
simulate Hamiltonians with logarithmically many resources.

↰

Potential exponential quantum speedup!
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Quantum spatial search on 2D lattices

Task: Starting from uniform superposition state,
simulate

H = −γL− |w⟩ ⟨w|

to find the marked node |w⟩ (Childs and Goldstone
2004).
Embedding scheme: unary embedding
Resources: 6 qubits, 132 1-qubit gates, 114 2-qubit
gates
Budget: < $100 (AWS Braket pricing)

Standard binary: 831 1-qubit and 123 2-qubit gates on 4 qubits.



Real-space quantum dynamics - IonQ

Task: Simulate the 1D Schrödinger equation with a
quadratic potential:

i
∂

∂t
Ψ =

[
−1

2
∇2 +

(
x2 − 1

2
x

)]
Ψ(t, x)

with Gaussian initial state Ψ(0, x) ∝ e−
x2

4σ2 .



Real-space quantum dynamics - IonQ

Method: Fock space truncation
Embedding scheme: penalty-free one-hot embedding
Resources: 5 qubits, 1 single-qubit gate, 154 two-qubit gates.
Budget: < $1300 (AWS Braket pricing)

Standard binary: requires over 1800 1-qubit gates and 200 2-qubit
gates on 3 qubits.



Real-space quantum dynamics - QuEra

Method: Finite differences
Embedding scheme: antiferromagnetic embedding
Resources: 12 qubits, 2 µs evolution time
Budget: < $100 (AWS Braket pricing)

Standard binary: analog implementation not possible



Summary and Outlook

▶ We developed a unifying framework for mapping sparse
problem Hamiltonians to embedding Hamiltonians accessible
to quantum hardware, applicable to analog and digital devices

▶ Our framework allows for hardware-aware design of algorithms
and leads to significantly improved resource usage (gate
count), enabling the deployment of quantum algorithms for
interesting scientific problems

Future directions:

▶ Applications to other problems? (condensed matter physics,
quantum chemistry, differential equations, etc.)

▶ Finding new task-oriented Hamiltonian embeddings for
problems with less regular structure?
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