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Abstract

We propose Hamiltonian embedding, a technique for simulating a desired
sparse Hamiltonian by embedding it into the evolution of a larger and
more structured quantum system, allowing for more efficient simulation
through hardware-efficient operations. We conduct a systematic study of
this new technique and demonstrate significant savings in computational
resources for implementing prominent quantum applications. As a result,
we experimentally realize quantum walks on complicated graphs (e.g.,
binary trees, glued-tree graphs), quantum spatial search, and the simulation
of real-space Schrödinger equations on current trapped-ion and neutral-
atom platforms. Given the fundamental role of Hamiltonian evolution in the
design of quantum algorithms, our technique markedly expands the horizon
of implementable quantum advantages in the NISQ era.

Motivation: Sparse Hamiltonian simulation

Sparse Hamiltonian simulation plays a fundamental role in quantum computa-
tion. Although several theoretically appealing quantum algorithms have been
proposed for this task, they typically require a black-box query model of the
sparse Hamiltonian, rendering them impractical for near-term implementation
on quantum devices.
To avoid sophisticated oracle constructions, we propose to use the quantum
Hamiltonian to model native operations in a quantum computer, thereby en-
abling efficient Hamiltonian simulation without going through a hardware-
agnostic compilation process. We develop a general framework with rigorous
error analysis and a flexible construction approach with concrete instances,
allowing us to demonstrate interesting quantum applications on both digital
and analog quantum computers.

General formulation and error analysis

Given η, ϵ > 0, we say H is a (q, η, ϵ)-embedding of A if there exists a
subspace S ⊂ C2q

and a unitary operator U such that

1 PS(U †HU)PS⊥ = 0, i.e., U †HU is block-diagonal in S and S⊥,
2 ∥I − U∥ ≤ η, where I is the identity operator in C2q

,
3 ∥(U †HU)|S − A∥ ≤ ϵ, where (·)|S := PS(·)PS.

We call the subspace S as the embedding subspace.

Theorem 1. (Hamiltonian simulation with Hamiltonian embedding)
Suppose that H is a (q, η, ϵ)-embedding of A. Then, for a fixed evolution time
t ≥ 0, we have that ∥∥∥∥(e−iHt

) ∣∣∣∣
S

− e−iAt
∥∥∥∥ ≤ (2η∥H∥ + ϵ)t.

Building Hamiltonian embeddings

Theorem 2. (Rules for building Hamiltonian embeddings)

1 (Addition) For j = 1, 2, let Hj be a (q, η, ϵj)-embedding of Aj, then H1 + H2
is a (q, η, ϵ1 + ϵ2)-embedding of A1 + A2.

2 (Multiplication) Let H be a (q, η, ϵj)-embedding of A, then for a real scalar
α, αH is a (q, η, |α|ϵ)-embedding of αA.

3 (Composition) For j = 1, 2, let Hj be a (qj, ηj, ϵj)-embedding of Aj, then
H1 ⊗ I + I ⊗ H2 is a (q1 + q2, η1 + η2, ϵ1 + ϵ2)-embedding of A1 ⊗ I + I ⊗ A2.

4 (Tensor product) For j = 1, 2, let Hj be a (qj, ηj, ϵj)-embedding of Aj, then
H1 ⊗ H2 is a (q1 + q2, η1 + η2, ∥A1∥ϵ2 + ∥A2∥ϵ1 + ϵ1ϵ2)-embedding of
A1 ⊗ A2.

Composition

Tensor product

Perturbative Hamiltonian embedding

Let Q be a q-qubit operator such that Q
∣∣∣
S = A, and let Hpen be a q-qubit

operator such that the ground-energy subspace is S. For g > 0, we construct
H = gHpen + Q to be a perturbative Hamiltonian embedding of A with
penalty coefficient g.

Theorem 3. (Perturbative Hamiltonian embedding, informal)
Let H and A be as above, and let R = PS⊥QPS, where PS and PS⊥ are
projections onto S and S⊥. Then for sufficiently large g > 0, the Hamiltonian
H is a (q, η, ϵ)-embedding of A, where η ∼ 1/g, ϵ ∼ ∥R∥/g.

Target Hamiltonian 
A

Embedding Hamiltonian 
H
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Hamiltonian embedding of sparse matrices

Embedding scheme Sparsity structure Max Pauli weight
Unary Band max(b, 2)

Antiferromagnetic Band max(b, 2)
Circulant unary Banded circulant max(b, 2)

Circulant antiferromagnetic Banded circulant max(b, 2)
One-hot (w/ penalty) Arbitrary sparse 2
Penalty-free one-hot Arbitrary sparse 2

(b is the bandwidth of a banded matrix)
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Unary embedding of a chain

Real-machine experiments

Quantum spatial search on a 2D lattice.
Starting from the uniform superposition state,
we simulate

H = −γL − |w⟩ ⟨w|
to find the marked node |w⟩ on a 2D lattice
(L is the graph Laplacian).
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Search on 4-by-4 grid (numerical simulation)

Search on 4-by-4 grid (IonQ, unary)

T = 2 T = 4 T = 6

T = 2 T = 4 T = 6

Spatial search on IonQ Aria-1

Real-space quantum simulation.
We simulate the Schrödinger equation
over d-dimensional Euclidean space:

i
∂

∂t
Ψ =

[
−1

2
∇2 + f (x)

]
Ψ(t, x),

with initial state Ψ(0, x) = Ψ0(x).

2D Real Space Dynamics (Numerical, antiferromagnetic)
T = 0.5 T = 1 T = 1.5

2D Real Space Dynamics (QuEra, antiferromagnetic)
T = 0.5 T = 1 T = 1.5

Real-space simulation on QuEra Aquila
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Experiment on IonQ (one-hot embedding)
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Experiment on IonQ (one-hot embedding)
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Initial wave packet (vacuum state)

Real-space simulation on IonQ Aria-1
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